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COMBINATORIAL DIMENSION A N D  
R A N D O M  SETS 

BY 

R. C. BLEF AND T. W. KORNER* 

ABSTRACF 

Having defined the combinatorial dimension of an arbitrary subset of a finite 
dimensional lattice, for every a E (1,2) we produce a set in N: whose dimension 
equals or. 

I. Introduction 

The notion of fractional Cartesian products in a context of harmonic analysis, 

studied in [1], subsequently gave rise to a notion of combinatorial dimension, 

further studied in [2]. We recall some definitions from [2]: As usual, N will 

denote the set of natural numbers. Let J be a positive integer, E C N ~ ( = the 

usual J-fold Cartesian product of N), and define for any positive integer s 

q~E (s) = max{[E fq (A~ x . . .  x AJ)I: A, C N, IA, [ . . . . .  [A~ [= s}. 

([-[ denotes cardinality.) The combinatorial dimension of E is given by 

dim E = inf a : l lm  ~ • ~ . 

Suppose dim E = a. We say that E is a-dimensional and distinguish between 

two mutually exclusive cases: E is exactly a-dimensional when 

'PE (s) 
lira < 0% 

and asymptotically a-dimensional, otherwise. The following is a more stringent 

notion: E C N j is an a-Cartesian product, 1 _-< a _-< J, if 

0 < li._7_m ( ~ ( s ) )  =< l-~m ( ~ )  < ~176 
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Clearly, every a-Cartesian product is exactly a-dimensional. The converse, 

however, is false (see Proposition C below). 

In [1], given arbitrary integers p =>q > 1, p/q-Cartesian products were 

displayed as subsets of N~P; for an arbitrary 1 < a < ~, a-dimensional sets were 

obtained as appropriate 'limits' of rational r-Cartesian products in the 'infinite 

dimensional' framework U~_,N( A basic question was then raised: Given 

1 < c~ < 2, can we find a-dimensional sets in N2? This question is affirmatively 

answered in this paper. 

We thank Professor J. Schmerl for numerous stimulating conversations on 

topics treated in this paper. 

II. Combinatorial  dimension of random sets 

THEOREM A. (a) There exists a family of sets {Fx : Fx C N-', x E (1,2]} with the 

following properties : For each x @ (I, 2] 
(i) Fx is exactly x-dimensional, 

and 

(ii) Fx = U,<xF, .  

(b) There exists a family of sets {F; :Fx CN 2, x E[1,2)} with the following 

properties : For each x E [1,2) 

(i) Fx is asymptotically x-dimensional, 

and 

(ii) Fx = ("l,>xF,. 

We prove first a simpler yet archtypical result whose proof contains the main 

idea for the proof of Theorem A. 

PROPOSITION B. Exactly a-dimensional sets exist in N 2 for every a ~ (1,2). 

Lemma 1 below is a finite version of Proposition B. Denote 

and 

I ( s ) = { A  C N :  [ A I  = s}, 

Jk ={1 , . - . , k} .  

LEMMA 1. Let 1 < a < 2, and M be an arbitrary positive integer. There exists 

an integer depending on M, n ( M )  = n >= M and F C J, x J, so that 

(1) 1rv(n)>=�89 ~, 

and 
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(2) 

where 

PROOF. 
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~ ( s ) < = s  ~ for all s >=L(a), 

L ( a )  = m i n { s  : 2 s  - s ~ (2  - a )  =< - 1}.  

Let k = > M be an arbitrary integer, and t--/'v(k)~i~ J~.J~ be an array of 

independent Bernoulli variables (on (lq, P)) where 

= = - POX " ( k ) = 0 ) = l - k "  ~ P(XI~ ) 1) k "-~ and _ , . .q  

Suppose L(a)<= s < M, and A , B  ~ I(s) .  Clearly, 

( ~ Y ( ~ ' > ) <  ~ (~)k(~- -"m, l  - _< (3) P . .q  = s" = k "-2) . . . .  k(~ '-~. 
i m = s  ~ 

j ~ B  

Summing over all A, B C A ,  A, B ~ I(s) ,  we deduce from (3) and the definition 

of L ( a )  

(4) P ..,j = s for some A, B C J~, A, B E I(s  k2"k ~'~ ~-~" 2 ~ < 2M'-/k. 
i 

j ~ B  

By Chebyshev's inequality, we have 

(5) P ( t  ~ X l ~ ) - k ~  ~ k )  <-2k~-~" 
i , j~Jk  

Combining (4) and (5) for sufficiently large and hereafter fixed k, we obtain with 

high probability o2 ~ f~ so that for all L (a) =< s =< M 

Xl~'(~o)>=�89 ~ and 
i , j ~J  k 

(,) 
for all A, B C A,  

We thus obtain a random set 

which, by (*), satisfies 

(6) 

and 

(7) 

Let 

l E A  

A , B  E l ( s ) .  

F~ = { ( i , j ) E A  xJk : Xl~)(~o) = 1}, 

I a �9 ~ ( k ) ~ k  , 

�9 v. (s) =< s ~ for all L (a)  = s =< M. 
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n = min{j => M :~v .  (j) => �89 

(from (6): M = n =< k); by a judicious removal of [ ~ .  (n ) - �89  ~ - 1] points from 

F C A x Jk, and by relabeling coordinates we obtain F C J. x J. that satisfies (1) 

and (2). [] 

The following lemma is an elementary fact that we formalize for later use. 

F,,F2C N 2 are said to be bidisjoint if zr~(F00 zr,(F2)= zr2(F007r2(F2)=O, 

where zr~ and 7r2 are canonical projections from N 2 onto N. 

Let {Fj}7=~ be a collection of mutually bidisjoint sets so that [m LEMMA 2. 

each j 

Let 

Then, 

�9 ~ j ( s )<Ks ~ [oralls>=l.  

F=  U Fj. 
j = l  

�9 ~ (s) <= 2Ks ~ for all s >= 1. 

PROOF. Suppose that Fj C I) ~) x I~ 2), where I~ z) O I~ ~ = O whenever j ~  k, 

1 = 1,2. Let A,  B E I(s),  and write Aj = A n I~ ~), B~ = B O I~ 2). Then, 

] F A ( A  x B ) l =  ~. I F O ( A ;  xBi) l  
! 

_-< K ~. (max(lA, J, J Bj J))" 
I 

<=2Ks". f- 

PROOF OF PROPOSITION B. The assertion is trivial for a = 1, 2. Having fixed 

a E(1,2) ,  for each j => 1 let n( j )  be as in Lemma 1. Let {/j} be a sequence ot 

mutually disjoint subsets of N, ]/j I-- nO). By Lemma 1, we find Fj C / / x / ~  so 

that 

�9 v I (s) <= Ks" for all s _-> 1, 

where 

K = (L (a))~, 
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and 

�9 ~j (n( j ) )  = ~n(j) . 

By L e m m a  2, F = U~=~ Fj is exactly a -d imensional .  [ ]  

Let  qb be any function increasing to ~ satisfying the following two propert ies:  

(a) l i m ~  Cb(s)/s = oc, 

and 

(b) l i m , _ ~ ( s ) / s  2-'= 0 for  some e > O. 

Next,  let k be an arbitrarily large integer,  and (X~ k~ . j )~.ieN be an array of 

independent  Bernoull i  variables where  

P( . . , ,  = 1) = ~ ( k ) / k  z. 

By appropr ia te ly  modifying the computa t ions  that led to L e m m a  1, we obtain 

the following (details are omit ted):  

PROPOSITION C. Let �9 be as above. There exist F C N 2 and Ki, K2 > 0 with the 

following properties : 

(i) qT~(s)< K,dP(s) 

for all integers s >= 1, and 

(ii) ~ ( k j )  -> K2~(kj) 

for some (kj), k1--->oo. 

In particular,  for every  a E [1,2) there  exist asymptotical ly a -d imens iona l  sets 
in N 2. 

We now proceed  to the proof  of T h e o r e m  A. First, we require  a ref inement  of 

Lem ma  1. 

LEMMA 3. Let 1 < a < [3 < 2. For each positive integer M there exists an 

integer (depending on M, a and fl) k ( M ; a ,  f l )=  k >=M so that the following 

holds: Let 3' E [ a , [ 3 ]  be arbitrary. There exists an integer n, M <= n <= k, and 

F C .In x .In so that 

(8) ~ ( n )  _-__ �89 

and 

(9) ~ ( s ) < = s "  fora l l s>=L(y )  

(L (3') = min{s : 2s - s "(2 - y )  < - 1}). Furthermore, F C J~ x .In satisfies also the 

following: 

(10) Let {q~},=l be an enumeration of the rationals in [a ,2) .  Then, 
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where 

~-(s)<=s q, foralls >-L~(qi)andqj ~=7, 

L,(qj) = min{s :2s - sq,(2- ~)<= - 1}. 

/X~k~ be an ar ray  of PROOF. We argue as in the proof  of L e m m a  1: Let ~ q S,.j~N 

independen t  Bernoull i  variables on ( I L P )  where  

P(X',~' = 1 )=  k ~ 2 

Next,  consider  the event  

H~'={,~A2 X{,~ '>-s~f~176 B C J k ,  L ( T ) < : J A l = l B l = s < = M }  �9 
j~H 

Following (4) (in the proof  of L e m m a  I), we obtain 

p(H~')  <__ M2"'Tk. 

Similarly, for q, => 7 let 

. . ,  =s~,forsomeA, BCJ~,G(qj)<=lAt=IBI s ~ M  
l E A  
j c l ~  

and deduce  that  

(11) ~k~ P(Hq, ) <-_ M2"~/k. 

Now, observe  that  as a function of qs, L~ ( . )  is a decreasing funct ion and hence 

{L~(q , ) , . . . ,L~(q , ) , . . . }  is a finite set that  we e n u m e r a t e  as 

{L , , . -  ", LN}, 

where  L, = L~(2) and LN = L ( 7 ) .  Let  1 =< l =< N and write 

O, = {qj : L,(q,) = L,}. 

Let  qs,," " ', q,~ E O~ be arbi t rary ,  qs, > "  " " > qJm > 7" Clearly,  

H ~ C  . . .  C 14~k~ 

and therefore  f rom ( 1 1 ) w e  obta in  

P ( ~ ~ H~q: ' )  = 1 -  MaM'-/k. 
qjEO~ 

On the o ther  hand,  as in (5) an appl icat ion of Chebyshev ' s  inequali ty yields 
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i , jEJ k 

We now choose k large enough so that we can (with high probability) find to in 

OI OI qJ j i 'J~Jk " " q " 

At this point we claim that k = k (M;  a,/3) can be chosen and fixed so that given 

any y E [a,/3], we can (with high probability) find to ~ G~.k. To see this, we 

observe that the size of k depends on N=J{L~(qs)}y<], on k 2-~ and on 

min{k : k ~ => 2k}. Our claim follows from three simple facts: There is No so that 

No= > t{L~(qj)};<l for all y E [a,/3]; k -'-~ > k2-e; 

min{k :k ~ =>2k}=min{k :k ~ _->2k}. 

Having fixed a large enough k that depends only on M, a, and/3, we obtain a 

random set 

F~ ={ ( i , j )~L  x L  : Xl~)(to) = 1} 

(to E G~.~), and conclude the proof as we did in Lemma 1. []  

PROOF OF THEOREM A. Part (a). We start with an arbitrary sequence 

(aj)_~<j<~: a0=3 /2 ,  aj converging to 2 monotonically as j---~+oo, and as 
converging to 1 monotonically as j - - * -  ~. Let 

{Rq : 0 < i  < %  - ~ < j  <~}  

be a partition of N, where J Rq I = m for each i and j. For each - m < j < m, let 

{rq}~=l be an enumeration of the rationals in [as, aj+l), and for each i let 

~i C Rq x R u 

be an exactly rq-dimensional set that is obtained by an application of Lemma 3 

in the following way: Let {Im}~< be a sequence of mutually disjoint sets in Rq, 
Jim] = n(m, rq), where 

m < n ( m ,  rq) = n,. <- k ( m ;  ai,  a/.~), 

and F u") C It, • /= are obtained by an application of Lemma 3. Let 

/Sq= U F('~). 
m = I  

By Lemma 3 and Lemma 2, ~j C R,j x R~j satisfies the following: 
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~,j (s)  <- 2Kq (q)s ~ for all s > 1 and rationals q > ~ rii  (13) 

where 

Kj (q) = (L,,, (q))2 

and 

(14) *r =>-'2n ,~,' 

for all m. For each x E (1,2], define 

z,= t_J k 
rq<x 

CLAIM 1. There is K, > 0 so that 

We, (s) <= Kxs ~ for all s >- 1. 

Suppose x E [aj, aj§ Let A, B E I ( s ) and write Aq = A (q Rq, Bo = B tq Rq. 

Since {Rq x Rq} is a collection of mutually bidisjoint subsets of N ~, we have 

Let 

]Fx fq (A x B)f  = ~ ]~i  (-I (Aq x Bq) I . 
I,I 

S = {(i,j): I~i fq (Aq x B,j) I # O} 

(clearly IS I < ~), and let q < x be a rational so that 

(i) q > rq, 

and 

(ii) L,,, (q) = L,,, (x) 

whenever (i, j ) E  S. It follows from (13) and (15) (see Lemma 3) that 

[Fx f3 (A x B)[ =< 2 max (L,,j (x))2s x. 
( , j )  

But, L, , j(x)= < L ( x ) f o r  all rq <= x, and the claim is established (Kx = 2(L(x))2). 

CLAIM 2. lira, ~Fx (x)/s x >= �89 

Let m => 1 be arbitrary. Since 

m <= n(m, rq) <- _ k ( m ; a j ,  aj+~) 

for all i, we obtain an increasing~equence of rationals (q~)7=~ C [aj, aj.l) so that 
(i) q,---~x as i ~ o o ,  
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and 

(ii) n(m,q,)=no>=m for all i. 

Therefore, by (14), 

�9 ~ (no) >= -~znoq' for all i, 

and the claim follows. 

The definition of Fx and the two claims above imply that {Fx}x~,.,.j satisfies the 

required properties. 

The proof of part (b) is similar and is omitted. [] 

REMARKS. (1) The existence of a-dimensional sets within N 2 w a s  obtained in 

this paper by random methods. J. Schmerl pointed out to us that explicit designs 

of -~ and ]-Cartesian products in N 2 c a n  be obtained as corollaries to graph 

theoretic results (theorem 2.8 and theorem 2.9 on p. 314 of [3]) which aim at the 

open problem of Zarankiewicz (whose statement can be found on p. 309 of [3]). 

For any other 1 < a < 2, explicit designs of a-dimensional sets and afortiori 

a-Cartesian products in N 2 are not known. 

(2) (We assume here that the reader has some familiarity with commutative 

harmonic analysis.) We say that a spectral set E in a discrete abelian group is 

p-Sidon, 1 < p =< 2 if 

(15) Ce (F)^ C l' 

holds precisely when r --- p. E is said to be asymptotic p-Sidon if (15) above holds 

precisely when r > p. (Notation: C~ ([ ' )= space of continuous functions on 
whose Fourier transform is supported in E.) Next, we recall that F = {Xj}T=t C F 

is dissociate if for any {Xj}~=~C F and 6j =0 ,  +-1,---2, the relation 

N 

VI x~, = 1 ( =  identity element in F) 
j=l 

holds precisely when 6j = 0 for all j = 1 , . . . ,N .  

For every positive integer n, the ordinary n-fold Cartesian products of any 

dissociate set F are known to be prototypical examples of 2n/(n + 1)-Sidon sets 

([4] and [5]). In [1], filling the gaps between 2n/(n +1)  and 2(n + 1)/(n +2),  

appropriate designs of J/K-Cartesian products of F, displayed as subsets of F ~k), 
turned out to be 2J/(J+K)-Sidon; for irrational p E(1,2) ,  p-Sidon and 

asymptotic p-Sidon sets were obtained as limits of 'rational' Cartesian products 

in a framework of an 'infinite product'  of F. At that point, a natural question 

remained open: Does F" contain p-Sidon and asymptotic p-Sidon sets where 
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p E ( 2 ( n -  1)/n, 2n/(n + 1)) is arbitrary? An affirmative answer is provided via 

the s-dimensional sets obtained here, and theorem 5.2 of [2] which states 
essentially the following: E C F" is exactly a-dimensional (asymptotically 
a-dimensional) itt F is 2c~/(o~ + l)-Sidon (asymptotic 2c~/(~ + 1)-Sidon). 
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