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COMBINATORIAL DIMENSION AND
RANDOM SETS

BY
R. C. BLEI' AND T. W. KORNER*

ABSTRACT

Having defined the combinatorial dimension of an arbitrary subset of a finite
dimensional lattice, for every a € (1,2) we produce a set in N° whose dimension
equals a.

1. Introduction

The notion of fractional Cartesian products in a context of harmonic analysis,
studied in [1], subsequently gave rise to a notion of combinatorial dimension,
further studied in [2]. We recall some definitions from [2}: As usual, N will
denote the set of natural numbers. Let J be a positive integer, E C N’ (= the
usual J-fold Cartesian product of N), and define for any positive integer s

Ye(s)=max{|EN(A, X - XA))|: A CN,|A/|=---=]A,|=5s}.
(]| denotes cardinality.) The combinatorial dimension of E is given by

) . — Ve (S)
dim E =1nf{ llm T } .

Suppose dim E = a. We say that E is a-dimensional and distinguish between
two mutually exclusive cases: E is exactly a-dimensional when

— V(s
lim e )<

s

and asymptotically «-dimensional, otherwise. The following is a more stringent
notion: E C N’ is an a-Cartesian product, 1 = a = J, if

0<11m< :( )> : (\I':;(s)>
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Clearly, every «-Cartesian product is exactly «-dimensional. The converse,
however, is false (see Proposition C below).

In [1], given arbitrary integers p =g >1, p/q-Cartesian products were
displayed as subsets of N%; for an arbitrary 1 < a < ®, ¢-dimensional sets were
obtained as appropriate ‘limits’ of rational r-Cartesian products in the ‘infinite
dimensional’ framework U, N. A basic question was then raised: Given
1< a <2, can we find a-dimensional sets in N*? This question is affirmatively
answered in this paper.

We thank Professor J. Schmerl for numerous stimulating conversations on
topics treated in this paper.

II. Combinatorial dimension of random sets

THEOREM A. (a) There exists a family of sets {F. : F. CN°, x € (1, 2]} with the
following properties: For each x € (1,2]

(i) F, is exactly x-dimensional,
and

(i) F. = U,..F.

(b) There exists a family of sets {F,:F.CN’, x €[1,2)} with the following
properties: For each x €[1,2)

(i) F. is asymptotically x-dimensional,
and

(i) F. =MN,..F.

We prove first a simpler yet archtypical result whose proof contains the main
idea for the proof of Theorem A.

PrROPOSITION B. Exactly a-dimensional sets exist in N° for every a € (1,2).
Lemma 1 below is a finite version of Proposition B. Denote

I(s)={ACN:|A|=s5s},
and

Jk ={1,"',k}.

LEMMa 1. Let 1< a <2, and M be an arbitrary positive integer. There exists
an integer depending on M, n(M)=n =M and F C J, X J, so that

1 Vr(n)z:n",

and
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) Ye(s)=s" forall s = L(a),
where
L(a)=min{s:2s —s"Q2—-a)= —1}.

ProoF. Let k =M be an arbitrary integer, and (X!"),ex be an array of
independent Bernoulli variables (on (€}, P)) where

P(X{P=1)=k"7 and P(X{P=0)=1—-k*
Suppose L(a)=s =M, and A, B € I(s). Clearly,

3) (}: X®z s ) S (fn) kD (] — ke = e s
2 .

m=s
jEB

Summing over all A, B C Ji, A, B € I(s), we deduce from (3) and the definition
of L(a)

@ P ( > Xz s forsome A,BCJ, A, B€E I(s)) = kUK =M k.
i€A
jEB

By Chebyshev’s inequality, we have

> XY -k*

=

) P( = k) =2k*,

Combining (4) and (5) for sufficiently large and hereafter fixed k, we obtain with
high probability w €£) so that for all L(a)=s=M

> XP(w)ztk® and D X{P(w)=s°
ijETy i€EA
jEB

) forall A,BCJ, A, BEIs).
We thus obtain a random set
={(L,NET X L : X Pw) =1},

which, by (*), satisfies

(6) Ve (k)z ik,
and
N Ve (s)=s" forall L{a)=s=M.

Let
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n=min{j =M :¥: (j)=3°}

(from (6): M = n = k); by a judicious removal of [¥, (n)—3n" — 1] points from
F C Ji X Ji, and by relabeling coordinates we obtain F C J, X J, that satisfies (1)
and (2). a

The following lemma is an elementary fact that we formalize for later use.
F,,F,CN are said to be bidisjoint if m,(F\) N m(F2) = mF\) N mo F2) =,
where m, and m, are canonical projections from N” onto N.

LEMMA 2. Let {F};-1 be a collection of mutually bidisjoint sets so that for
each j

Ve (s)= Ks*® foralls=1.
Let

F=J FE.
i=1
Then,
Ve(s)=2Ks" forall s = 1.

PrROOF. Suppose that F; C I{"xI?, where I’NI{’ = whenever j#k,
1=1,2. Let A,B €1(s), and write A; = A NI", B; = BNIP. Then,

|[FN(A xB)|=2 |[FN(A; X B)|
éKZ (max(| A; |,|B;|))

sx{(S1al) +(3im1)])
=2Ks". -

PrROOF OF PropOSITION B. The assertion is trivial for « =1,2. Having fixed
a €(1,2), for each j =1 let n(j) be as in Lemma 1. Let {I;} be a sequence of
mutually disjoint subsets of N, |I;|= n(j). By Lemma 1, we find F; C I; X I; so
that

Ve (s) = Ks*® foralls=1,
where

K =(L(a)),
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and
Vi, (n()) Z 30 )"
By Lemma 2, F = U_, F, is exactly a-dimensional. O

Let @ be any function increasing to « satisfying the following two properties:
(a) lim,_. ®(s)/s =,
and
(b) lim,_.®P(s)/s> " =0 for some £ > 0.
Next, let k be an arbitrarily large integer, and (X{’)jex be an array of
independent Bernoulli variables where

P(XE = 1) = d(k)/ k>

By appropriately modifying the computations that led to Lemma 1, we obtain
the following (details are omitted):

ProposITION C. Let ® be as above. There exist F C N’ and K,, K, > 0 with the
following properties :

(1)) Ve(s)= KiP(s)
for all integers s = 1, and

(i) Ye(k)= K, P(k;)
for some (k;), k; — o,

In particular, for every a € [1,2) there exist asymptotically o -dimensional sets
in N°.

We now proceed to the proof of Theorem A. First, we require a refinement of
Lemma 1.

LEMMA 3. Let 1<a <B<2. For each positive integer M there exists an
integer (depending on M, a and B) k(M;a,B)=k = M so that the following
holds: Let y €|a, B] be arbitrary. There exists an integer n, M =n =k, and
F CJ. X J, so that

®) Ve(n)zsn?,
and
) Ve(s)=s forall s = L(vy)

(L(y)=min{s :2s ~s"(2—y)= —1}). Furthermore, F C J, X J, satisfies also the
following:

(10) Let {q;};-1 be an enumeration of the rationals in [e,2). Then,
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\If,_»(s)gs“, foralls iLy(q,-)andqj =
where
L,(q)= min{s :2s —s%C2—-y)= — 1}

PrROOF. We argue as in the proof of Lemma 1: Let (X{),;ex be an array of
independent Bernoulli variables on (Q2,P) where

PXH=1)=k" ",

Next, consider the event

H‘y‘":{z X‘i,’"zs*forsomeA,BCJk,L(Y)glA‘:|B|=S=<‘—M}'
EA
jeB

Following (4) (in the proof of Lemma I), we obtain
P(H)y= M2 /k.

Similarly, for g; = vy let

H‘,,';’={E X{'=s%forsome A,BCJi,L,(q)=|A|=|B|=s éM},
IEA
ien

and deduce that

(1) P(H})= M2" [k,
Now, observe that as a function of g;, L, () is a decreasing function and hence
{L,(q)), -+, L,(g;), -} is a finite set that we enumerate as

{L:, e LN},

where L, =L,(2) and Ly = L(y). Let 1 =] = N and write
Q ={g:L,(q))= Li}.
Let g;,- -+, q;, € Q: be arbitrary, g, >--->gq;, > vy. Clearly,
H{’C---CHY
9, 4%,
and therefore from (11) we obtain

PN ~HY)=z1-M2"k

4GE0,

On the other hand, as in (5) an application of Chebyshev’s inequality yields
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> X -k

=

(12) P ( = k) =2k

We now choose k large enough so that we can (with high probability) find  in
Go=[ N ~H|n-n[ N ~mp]n] 3 xp=u).
oY o &S,

At this point we claim that k = k(M ; a, B) can be chosen and fixed so that given
any y € [a, 8], we can (with high probability) find @ € G,.. To see this, we
observe that the size of k depends on N =|{L,(g)}-), on k" and on
min{k : k¥ =2k}. Our claim follows from three simple facts: There is N, so that
Noz {L,(g)}i-| for all y €[q,B]; kK" Z k™",

min{k : k? =2k} =min{k :k” = 2k}.

Having fixed a large enough k that depends only on M, «, and 3, we obtain a
random set

FE,={(i,))EJ X J: X{P(w) =1}
(@ € G,x), and conclude the proof as we did in Lemma 1. [l

PROOF OF THEOREM A. Part (a). We start with an arbitrary sequence
(0)=n<j<=: 00=3[2, «; converging to 2 monotonically as j—>+%, and o;
converging to 1 monotonically as j — —. Let

{R; :0< i<, —o<j<oo}

be a partition of N, where |R;; | = for each i and j. For each —oo<j <o, let
{r;}i=: be an enumeration of the rationals in [oy, a;.1), and for each i let

F,C Ry x R;

be an exactly r;-dimensional set that is obtained by an application of Lemma 3
in the following way: Let {I..}..-: be a sequence of mutually disjoint sets in R
|I.|= n(m,r;), where

ifs

m=n(m,r;)=n. <k(m;q, o),
and F™ C I, x I, are obtained by an application of Lemma 3. Let

F=y P

m=1

By Lemma 3 and Lemma 2, ﬁ}, C R, X R; satisfies the following:
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(13) Yr,(s)=2K;(q)s* for all s = 1 and rationals g = r;,
where
Ki(q)=(L,(q))
and
(14) Ve (nm)Zin',
for all m. For each x €(1,2], define
F.= U F,
CLamm 1. There is K, >0 so that
Ve (s)= Kes™ forall s =1.

Suppose x € [a;, a;.1). Let A, B € I(s) and write A; = A N R;, B; = BN R,;;.

Since {R; X R;} is a collection of mutually bidisjoint subsets of N°, we have

|[F. N (A xB)|=3 |F; N (A; X By)l.

Let
S ={(,j):|Fs N (A, x By)| #0}

(clearly | S| <), and let ¢ < x be a rational so that
@) q>r;,
and

(11) L’i,' (Q) = L"i,' (x)
whenever (i,j) € S. It follows from (13) and (15) (see Lemma 3) that

|E. N (A x B)| =2 max (L, (x))’s™.

But, L, (x)= L(x) for all r; =x, and the claim is established (K, = 2(L(x))’).
CLamM 2. lim, ¥g (x)/s* =1
Let m =1 be arbitrary. Since
m=n(m,r;)<k(m;a;, aj.)

for all i, we obtain an increasingsequence of rationals (g;)i-: C [a;, a;.1) so that
(i) gg—x as i > o,
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and
(i) n(m,q)=no=m for all i.
Therefore, by (14),

Ve, (no)Z3né for all i,

and the claim follows.

The definition of F, and the two claims above imply that {F, }.c.., satisfies the
required properties.

The proof of part (b) is similar and is omitted. a

REMARKS. (1) The existence of «-dimensional sets within N° was obtained in
this paper by random methods. J. Schmerl pointed out to us that explicit designs
of 3 and j-Cartesian products in N° can be obtained as corollaries to graph
theoretic results (theorem 2.8 and theorem 2.9 on p. 314 of [3]) which aim at the
open problem of Zarankiewicz (whose statement can be found on p. 309 of [3]).
For any other 1 <a <2, explicit designs of a-dimensional sets and afortiori
a-Cartesian products in N* are not known.

(2) (We assume here that the reader has some familiarity with commutative
harmonic analysis.) We say that a spectral set E in a discrete abelian group is
p-Sidon, 1=p =2 if

(15) C:(fycr

holds precisely when r = p. E is said to be asymptotic p-Sidon if (15) above holds
precisely when r > p. (Notation: Cg(I") = space of continuous functions on [’
whose Fourier transform is supported in E.) Next, we recall that F = {y;};-,CT
is dissociate if for any {y;};.;C F and §, =0, =1, 2, the relation

N
H x7=1 (=identity element in I')
j=1

holds precisely when 8, =0 for all j =1,---,N.

For every positive integer n, the ordinary n-fold Cartesian products of any
dissociate set F are known to be prototypical examples of 2n/(n + 1)-Sidon sets
([4] and [5]). In [1], filling the gaps between 2n/(n +1) and 2(n + 1)/(n +2),
appropriate designs of J/K-Cartesian products of F, displayed as subsets of F'¥,
turned out to be 2J/(J + K)-Sidon; for irrational p €(1,2), p-Sidon and
asymptotic p-Sidon sets were obtained as limits of ‘rational’ Cartesian products
in a framework of an ‘infinite product’ of F. At that point, a natural question
remained open: Does F" contain p-Sidon and asymptotic p-Sidon sets where
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p €Q2(n —1)/n,2n/(n + 1)) is arbitrary? An affirmative answer is provided via
the o-dimensional sets obtained here, and theorem 5.2 of [2] which states
essentially the following: E C F" is exactly a-dimensional (asymptotically
a-dimensional) iff F is 2a/(a + 1)-Sidon (asymptotic 2« /(a + 1)-Sidon).
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